441 research outputs found

    Grid multi-category response logistic models.

    Get PDF
    BackgroundMulti-category response models are very important complements to binary logistic models in medical decision-making. Decomposing model construction by aggregating computation developed at different sites is necessary when data cannot be moved outside institutions due to privacy or other concerns. Such decomposition makes it possible to conduct grid computing to protect the privacy of individual observations.MethodsThis paper proposes two grid multi-category response models for ordinal and multinomial logistic regressions. Grid computation to test model assumptions is also developed for these two types of models. In addition, we present grid methods for goodness-of-fit assessment and for classification performance evaluation.ResultsSimulation results show that the grid models produce the same results as those obtained from corresponding centralized models, demonstrating that it is possible to build models using multi-center data without losing accuracy or transmitting observation-level data. Two real data sets are used to evaluate the performance of our proposed grid models.ConclusionsThe grid fitting method offers a practical solution for resolving privacy and other issues caused by pooling all data in a central site. The proposed method is applicable for various likelihood estimation problems, including other generalized linear models

    Doubly Optimized Calibrated Support Vector Machine (DOC-SVM): an algorithm for joint optimization of discrimination and calibration.

    Get PDF
    Historically, probabilistic models for decision support have focused on discrimination, e.g., minimizing the ranking error of predicted outcomes. Unfortunately, these models ignore another important aspect, calibration, which indicates the magnitude of correctness of model predictions. Using discrimination and calibration simultaneously can be helpful for many clinical decisions. We investigated tradeoffs between these goals, and developed a unified maximum-margin method to handle them jointly. Our approach called, Doubly Optimized Calibrated Support Vector Machine (DOC-SVM), concurrently optimizes two loss functions: the ridge regression loss and the hinge loss. Experiments using three breast cancer gene-expression datasets (i.e., GSE2034, GSE2990, and Chanrion's datasets) showed that our model generated more calibrated outputs when compared to other state-of-the-art models like Support Vector Machine (p=0.03, p=0.13, and p<0.001) and Logistic Regression (p=0.006, p=0.008, and p<0.001). DOC-SVM also demonstrated better discrimination (i.e., higher AUCs) when compared to Support Vector Machine (p=0.38, p=0.29, and p=0.047) and Logistic Regression (p=0.38, p=0.04, and p<0.0001). DOC-SVM produced a model that was better calibrated without sacrificing discrimination, and hence may be helpful in clinical decision making

    PATTERN: Pain Assessment for paTients who can't TEll using Restricted Boltzmann machiNe.

    Get PDF
    BackgroundAccurately assessing pain for those who cannot make self-report of pain, such as minimally responsive or severely brain-injured patients, is challenging. In this paper, we attempted to address this challenge by answering the following questions: (1) if the pain has dependency structures in electronic signals and if so, (2) how to apply this pattern in predicting the state of pain. To this end, we have been investigating and comparing the performance of several machine learning techniques.MethodsWe first adopted different strategies, in which the collected original n-dimensional numerical data were converted into binary data. Pain states are represented in binary format and bound with above binary features to construct (n + 1) -dimensional data. We then modeled the joint distribution over all variables in this data using the Restricted Boltzmann Machine (RBM).ResultsSeventy-eight pain data items were collected. Four individuals with the number of recorded labels larger than 1000 were used in the experiment. Number of avaliable data items for the four patients varied from 22 to 28. Discriminant RBM achieved better accuracy in all four experiments.ConclusionThe experimental results show that RBM models the distribution of our binary pain data well. We showed that discriminant RBM can be used in a classification task, and the initial result is advantageous over other classifiers such as support vector machine (SVM) using PCA representation and the LDA discriminant method

    Ranking Medical Subject Headings using a factor graph model.

    Get PDF
    Automatically assigning MeSH (Medical Subject Headings) to articles is an active research topic. Recent work demonstrated the feasibility of improving the existing automated Medical Text Indexer (MTI) system, developed at the National Library of Medicine (NLM). Encouraged by this work, we propose a novel data-driven approach that uses semantic distances in the MeSH ontology for automated MeSH assignment. Specifically, we developed a graphical model to propagate belief through a citation network to provide robust MeSH main heading (MH) recommendation. Our preliminary results indicate that this approach can reach high Mean Average Precision (MAP) in some scenarios
    • …
    corecore